

Mark Scheme (Results)

Summer 2022

Pearson Edexcel International GCSE In Mathematics A (4MA1) Paper 1HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at <u>www.edexcel.com</u> or <u>www.btec.co.uk</u>. Alternatively, you can get in touch with us using the details on our contact us page at <u>www.edexcel.com/contactus</u>.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2022 Question Paper Log Number P68789A Publications Code 4MA1_1HR_2206_MS All the material in this publication is copyright © Pearson Education Ltd 2022

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- cao correct answer only
- ft follow through
- isw ignore subsequent working
- SC special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- awrt answer which rounds to
- eeoo each error or omission

No working

- If no working is shown then correct answers normally score full marks
- If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

- If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
- If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
- If a candidate misreads a number from the question. Eg. Uses 252 instead of 255; method marks may be awarded provided the question has not been simplified.
- Examiners should send any instance of a suspected misread to review. If there is a choice of methods shown, mark the method that leads to the answer on the answer line; where no answer is given on the answer line, award the lowest mark from the methods shown.
- If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

- It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
- It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
- Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

• Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded to another.

nternational (GCSE Maths						
Apart from question 6, 14, 21, 24 and 25, the correct answer, unless clearly obtained by an incorrect method, should be taken to imply a correct method							
Q	Working	Answer	Mark	Notes			
1 (a)		0.45	1	B1 oe eg $\frac{9}{20}, \frac{45}{100}, 45\%$			
(b)	eg $1 - (0.25 + 0.2 + 0.2) (= 0.35)$ or $1 - ("0.45" + 0.2) (= 0.35)$ or $300 \times (0.25 + 0.2 + 0.2) (= 195)$		3	M1 allow use of their "0.45" from par (a), check the table			
	eg 300 × "0.35" or 300 – "195"			M1 for a complete method			
		105		$\begin{array}{c c} A1 \\ \hline A1 \\ \hline cao (award \frac{105}{300} \text{ M2 only}) \end{array}$			
				Total 4 ma			

2 (a)	$eg 6 \times 2.4 + 5 \times 3.5$		2	M1
		31.9		A1 oe
(b)	(W =) 5.9n or $(W =) 5.9(n - 1) + 2.4$		2	M1 for $2.4n + 3.5n$ or $5.9n$ seen
	or $(W =) 2.4n + 3.5(n - 1)$			
		5.9n - 3.5		A1 oe but must be in simplest form
				eg –3.5 + 5.9 <i>n</i>
				Total 4 marks

$5 \times 12 (= 60)$ or $\frac{15 + 7 - 2 + 23 + x}{5} = 12$ oe or $\frac{x + "43"}{5} = 12$		3	M1	for a method to find the total of the 5 numbers or setting up an equation in x "43" comes from $15 + 7 - 2 + 23$
x + 15 + 7 - 2 + 23 = "60" or $x + "43" = "60"or "60" - (15 + 7 - 2 + 23)$			M1	for forming an equation with their 60 or for a complete calculation to find the value of x "43" comes from $15 + 7 - 2 + 23$
	17		A1	
				Total 3 marks

4	eg 0.45 × 180 (= 81) oe OR $\frac{15}{180} \left(= \frac{1}{12} \text{ or } 0.0833 \right)$ OR $\frac{15}{180} \times 100 \left(= 8.3(33)\% \right)$		4	M1	 for a method to find the number of students studying German OR the number of students studying French as a fraction or decimal of the total students OR a method to find the percentage of students studying French 81 may be seen as part of an equation
	eg 180 - 15 - "81" (= 84) or "81" + 15 (= 96) OR $1 - \left(\frac{1}{12} + \frac{45}{100}\right) = \left(\frac{7}{15} \text{ or } 0.466\right)$ or $\frac{1}{12} + \frac{45}{100} = \left(\frac{8}{15} \text{ or } 0.533\right)$ OR $100 - ("8.3" + 45) (= 46.6(66) \text{ or } 46.7\%)$ or "8.3" + 45 (= 53.3(33) or 53.3\%)			M1	 for a method to find the number of students studying Italian/Spanish or French/German OR a method to find the fraction or decimal of students studying Italian/Spanish or French/German OR a method to find the percentage of students studying Italian/Spanish or French/German 84 or 96 may be seen as part of an equation
	eg $\frac{"84"}{180 - "84"} (\times 100) \left(= \frac{7}{8} \text{ or } 0.875 \right)$ or $\frac{"84"}{"96"} (\times 100) \left(= \frac{7}{8} \text{ or } 0.875 \right)$ or $\frac{"7}{15} \div \frac{8}{15} = \left(= \frac{7}{8} \text{ or } 0.875 \right)$ or $\frac{"46.6"}{"53.3"} (\times 100) (= 0.872)$			M1	for a complete method to find the fraction or decimal or percentage of Italian/Spanish to French/German
		87.5		A1	accept 87.2 – 87.7
					Total 4 marks

5 (a)	$3c^4 + 12c^3$	2	B2 for $3c^4 + 12c^3$
			(B1 for $3c^4$ or $12c^3$)
(b)(i)		2	M1 for $(x \pm 9)(x \pm 1)$
			or for $(x+a)(x+b)$ with $ab = -9$ or
			a+b=8
	(x+9)(x-1)		A1 for correct factors
(ii)	-9, 1	1	B1 ft dep on factorising in the form
			(x+p)(x+q)
			Total 5 marks

6	$\frac{8}{3}(+)\frac{15}{4} \text{ or } (2)\frac{8}{12}(+)(3)\frac{9}{12} \text{ or } (2)\frac{8a}{12a}(+)(3)\frac{9a}{12a}$		3	M1	for correct improper fractions or fractional part of numbers written correctly over a common denominator
	eg $\frac{8 \times 4 + 15 \times 3}{3 \times 4}$ or $\frac{32}{12} + \frac{45}{12}$ or $\frac{32a}{12a} + \frac{45a}{12a}$ or $2\frac{8}{12} + 3\frac{9}{12} = 5\frac{17}{12}$ oe			M1	for correct fractions with a common denominator of 12 or a multiple of 12
	$\frac{32}{12} + \frac{45}{12} = \frac{77}{12} = 6\frac{5}{12} \text{ or } 5\frac{17}{12} = 6\frac{5}{12}$ or if shows $6\frac{5}{12} = \frac{77}{12}$ at the beginning then show that the addition comes to $\frac{77}{12}$	Shown		A1	dep on M2 for a correct answer from fully correct working or shows that RHS = $\frac{77}{12}$ and fully correct working shows LHS = $\frac{77}{12}$
					Total 3 marks

7	eg (V=) $\pi \times \left(\frac{18}{2}\right)^2 \times 3.5$ (= 890.(64) or $\frac{567}{2}\pi$)		3	M1	correct method to calculate volume
	eg (7.04 × 1000) ÷ "890.64"			M1	correct method to calculate density (if volume is incorrect, their value can be used if clearly labelled)
					accept use of 7.04 or an incorrect conversion from kg to g for mass
		7.9		A1	accept 7.9 – 7.92
					Total 3 marks

						Total 3 marks
					If no marks awarded, awa SCB1 for or 18000×0.85^2 (= 13 00 or 18000×0.85^3 (= 11 054 or 18000×0.4 (= 7200) or 18000×1.15 (= 20700 or 18000×1.15^4 (= 3148	95) oe 4.(25)) oe oe)) oe 2.(1125)) oe
		9396		A1	awrt 9396	
	and "11054.25"×0.85 oe					
	and "13005"×0.85(=11054.25) oe					
	or "15300"×0.85(=13005) oe					
	or "15300"×0.85×0.85×0.85 oe					
	eg 18000×0.85^4 oe			M1	(dep) for a complete method	oe
	or 18000×0.85 (= 15 300) oe				of 18 000	or $18000 \times 0.85^5 (= 7986.(69))$
8	18000×0.15 (= 2700) oe		3	M1	for finding 15% or 85%	M2 for 18000×0.85^4 oe

9	$-4x \le 11-3$ or $-4x \le 8$ or $-x \le 2$ or $3-11 \le 4x$ or $-8 \le 4x$		2	M1	allow equals sign or condone incorrect inequality sign for M1 only
		$x \ge -2$		A1	allow $-2 \le x$
					SCB1 for x and -2 with an incorrect sign between them or -2 as an answer
					Total 2 marks

10	$3 \div 2 (=1.5 \text{ or } \frac{3}{2}) \text{ or } eg \frac{51}{4(-0)}$ or $c = -1$ y = ``1.5''x (+ c) or y = mx - 1 or $eg y - 5 = m(x - 4)$		3	M1 M1	for correct method to find gradient or the correct value of <i>c</i> for gradient, may see a correct calculation or $\frac{3}{2}$ oe or $1.5x (+ c)$ oe for value of <i>c</i> , allow $c = -1$, $y = -1$, $(L =) mx - 1$ oe for use of $y = mx + c$ with either <i>m</i> or <i>c</i> correct (NB: $m \neq 0$) or for $(L =) 1.5x - 1$ oe
		$y = \frac{3}{2}x - 1$		A1	oe eg $y = 1.5x - 1$
					Total 3 marks

11	$(AB^2 =) 7.5^2 - 6^2 (= 20.25)$ or eg $(BAC =) \sin^{-1} \left(\frac{6}{7.5}\right) (= 53.1)$ or $\cos(BCA) = \frac{6}{7.5} (= 0.8)$		6	M1	for a correct first step to find <i>AB</i> or a complete method to find angle <i>BAC</i> or a correct first step to find angle <i>BCA</i>
	$(AB =) \sqrt{7.5^2 - 6^2} (= 4.5) \text{ or } (AB =) \frac{6}{\tan^{1.53.1''}} (= 4.5)$ or $(AB =) 7.5 \cos^{1.53.1''} (= 4.5) \text{ or}$			M1	for a complete method to find <i>AB</i> or angle <i>BCA</i>
	$(BCA =)\cos^{-1}\left(\frac{6}{7.5}\right) (= 36.8)$				
	(Area $ABC =$) $\frac{1}{2} \times 6 \times "4.5"$ (= 13.5)			M1	ft [their labelled <i>AB</i>] or [their labelled <i>BCA</i>]
	or (Area $ABC =$) $\frac{1}{2} \times 6 \times 7.5 \times \sin("36.8")(=13.47 \text{ or } 13.5)$				eg for $\frac{1}{2} \times 6 \times [$ their labelled <i>AB</i> $]$ or
					$\frac{1}{2} \times 6 \times 7.5 \times \sin[\text{their labelled } BCA]$
	(Area $DAC =$) 31.5 - "13.5" (= 18) or "13.5" + 0.5 × 7.5 × $AD =$ 31.5 oe			M1	ft (dep on previous M1) allow 31.5 – [their area]
	(AD =) ("18" ÷ 7.5) ÷ 0.5 oe			M1	for a complete method to find <i>AD</i> , dependent on correct working
		4.8		A1	accept 4.78 – 4.81
					Total 6 marks

12 (a	.)	$3^2 \times 5 \times 7$	1	B1 accept $3 \times 3 \times 5 \times 7$ oe or 315
(b))	$3^{11} \times 5^7 \times 7^5$	2	B2 fully correct answer (allow $x = 11, y = 7, z = 5$)
				(B1 for an answer in the form $3^p \times 5^q \times 7^r$ where one or two of <i>p</i> , <i>q</i> or <i>r</i> are correct)
				Total 3 marks

13	12 (-) 3		2	M1	for both values unambiguously identified
		9		A1	
					Total 2 marks

14	Elimination	Substitution		4	M1	for a correct method to eliminate <i>x</i> or <i>y</i> :
14	eg 9x - 15y = 75 20x + 15y = 70 + (29x = 145) or 12x - 20y = 100 12x + 9y = 42 - (-29y = 58)	eg $4\left(\frac{25+5y}{3}\right)+3y=14$ or $4x+3\left(\frac{25-3x}{-5}\right)=14$ or $3\left(\frac{14-3y}{4}\right)-5y=25$ or $3x-5\left(\frac{14-4x}{3}\right)=25$		4		 for a correct method to eminiate x of y. coefficients of x or y the same and correct operation to eliminate selected variable (condone 1 arithmetical error) or for correctly writing x or y in terms of the other variable and correctly substituting
		$3x - 3\left(\frac{3}{3}\right) = 23$				
					A1	dep on M1 for $x = 5$ or $y = -2$
	eg $3x - 5 \times -2^{\circ} = 25$ or $4x$ or $3 \times 5^{\circ} - 5y = 25$ or $4 \times 5^{\circ}$				M1	dep on M1 for substitution of found variable or
						repeating the steps in first M1 for the second variable
			x = 5 $y = -2$		A1	cao, dep on M1 a correct answer without working scores no marks
						Total 4 marks

15	PRS = 90 or $PQS = 90$ or $PSR = 180 - 136$ (= 44)		3	M1	may be seen on diagram. Must be labelled on diagram or identified using 3 letter notation.
	RPS = 180 - 90 - "44" oe or $RQS = 136 - 90$ (= 46)			M1	for a complete method
		46		A1	
					Total 3 marks

16 (a)	$(3x-1)(x+2) = 3x^{2} + 6x - x - 2(= 3x^{2} + 5x - 2)$ or $(3x-1)(3x+1) = 9x^{2} + 3x - 3x - 1(= 9x^{2} - 1)$ or $(x+2)(3x+1) = 3x^{2} + x + 6x + 2(= 3x^{2} + 7x + 2)$		3	M1	for a correct intention to multiply all 3 factors by multiplying 2 factors only, allow one error
	$[(3x^{2}+5x-2)(3x+1) =] 9x^{3}+15x^{2}-6x+3x^{2}+5x-2$ or $[(9x^{2}-1)(x+2) =] 9x^{3}+18x^{2}-x-2$ or			M1	(dep)ft for expanding by the third factor, allow one error
	$[(3x^{2}+7x+2)(3x-1) =] 9x^{3}+21x^{2}+6x-3x^{2}-7x-2$				
		$9x^3 + 18x^2 - x - 2$		A1	
	ALTERNATIVE				
	$9x^3 + 3x^2 + 18x^2 + 6x - 3x^2 - x - 6x - 2$		3	M2	for a complete expansion with 8 terms present, at least 4 of which must be correct
		$9x^3 + 18x^2 - x - 2$		A1	
(b)	$\left(\frac{8xy^2}{2x^5}\right)^2$ or $\left(\frac{x^4}{4y^2}\right)^{-2}$ or $\left(\frac{4x^{10}}{64x^2y^4}\right)^{-1}$		3	M1	for one of reciprocating or simplifying or squaring
	$\left(\frac{4y^2}{x^4}\right)^2 \text{ or } \left(\frac{x^8}{16y^4}\right)^{-1} \text{ or } \frac{64x^2y^4}{4x^{10}} \text{ or } \frac{\frac{1}{4}x^{-10}}{\frac{1}{64}x^{-2}y^{-4}}$			M1	for two of reciprocating or simplifying or squaring
		$\frac{16y^4}{x^8}$		A1	accept $16y^4x^{-8}$ or $\frac{16}{y^{-4}x^8}$ or $\frac{16x^{-8}}{y^{-4}}$ oe
	ALTERNATIVE				
			3	M2	for 2 correct terms (M1 for 1 correct term)
		$\frac{16y^4}{x^8}$		A1	accept $16y^4x^{-8}$ or $\frac{16}{y^{-4}x^8}$ or $\frac{16x^{-8}}{y^{-4}}$
					Total 6 marks
			1	1	i viai v mai no

					Total 5 marks
			4.74	A1	accept 4.73 – 4.74
	or $(QS =)\sqrt{3.8^2 + 6.1^2 - 2 \times 3.8 \times 6.1 \times \cos("50.9")}$				
	· · · · · · · · · · · · · · · · · · ·	or $(QS =)\sqrt{"2.95"^2 + "3.70"^2}$			× ~ /
	$(23 -)3.8 + 0.1 - 2 \times 3.8 \times 0.1 \times \cos(-30.9) (-22.4)$				(or QS)
	$(QS^2 =)3.8^2 + 6.1^2 - 2 \times 3.8 \times 6.1 \times \cos("50.9") (=$	$(QS^2 =)$ "2.95" ² +"3.70" ² (= 22.4)		M1	correct expression for QS^2
	$(P =) \sin^{-1} 0.776" (= 50.9)$	$(QX =)6.1 - \sqrt{5.73} = 3.70)$ or $(QX =)6.1 - 2.39 = 3.70)$		M1	for complete method to find angle <i>P</i> OR for method to find length of <i>OX</i>
	eg (sin P =) $\frac{9}{\frac{1}{2} \times 6.1 \times 3.8} \left(= 0.776 \text{ or } \frac{900}{1159} \right)$ or (sin P =) $\frac{18}{6.1 \times 3.8} \left(= 0.776 \text{ or } \frac{900}{1159} \right)$	$(PX^{2} =)3.8^{2} - "2.95"^{2} (= 5.73)$ or $(PX =)\sqrt{3.8^{2} - "2.95"^{2}} (= 2.39)$		M1	correct expression for sin <i>P</i> OR for start of Pythagoras method to find length of <i>PX</i> (where <i>X</i> is the point vertically below <i>S</i> on <i>PQ</i>)
17	(area $PQS =$) $\frac{1}{2} \times 6.1 \times 3.8 \times \sin P = 9$ or (area $PQRS =$) $6.1 \times 3.8 \times \sin P = 18$	$\frac{1}{2} \times 6.1 \times SX = 9 \text{ or}$ $(SX =) \frac{9}{\frac{1}{2} \times 6.1} (= 2.95)$ or $6.1 \times SX = 18$ or $(SX =) 18 \div 6.1 (= 2.95)$	5	M1	correct equation for the area of the triangle or parallelogram or a calculation to find the height of the parallelogram (where <i>X</i> is the point vertically below <i>S</i> on <i>PQ</i>)

18	eg $(BV^2 =)3^2 + 6^2 (= 45)$ or $(CT^2 =)3^2 + 6^2 (= 45)$ or $(DH^2 =) 6^2 + 6^2 (= 72)$ or $(MV^2 =)3^2 + 3^2 (= 18)$		4	M1	a correct expression for eg BV^2 or CT^2 or DH^2 or MV^2 where M is the midpoint of DC or a correct expression for [length] ² for any length in the cube using Pythagoras	M3 for $(VT =)\sqrt{6^2 + 3^2 + 3^2}$ $(= 3\sqrt{6} \text{ or } 7.34)$ (M2 for $(VT^2 =)$ $6^2 + 3^2 + 3^2 (= 54))$
	eg $(BV =)\sqrt{3^2 + 6^2} (= \sqrt{45} \text{ or } 3\sqrt{5} \text{ or } 6.70)$ or $(CT =)\sqrt{3^2 + 6^2} (= \sqrt{45} \text{ or } 3\sqrt{5} \text{ or } 6.70)$ or $(DH =)\sqrt{6^2 + 6^2} (= \sqrt{72} \text{ or } 6\sqrt{2} \text{ or } 8.48)$ or $(MV =)\sqrt{3^2 + 3^2} (= \sqrt{18} \text{ or } 3\sqrt{2} \text{ or } 4.24)$			M1	for a complete method for eg <i>BV</i> or <i>CT</i> or <i>DH</i> or <i>MV</i> or any length in the cube using Pythagoras	0 + 5 + 5 (- 54))
	$(VT =) \sqrt{"45"+3^2} \text{ or } \sqrt{\left(\frac{"\sqrt{72}"}{2}\right)^2 + 6^2}$ or $\sqrt{"18"+6^2} \text{ or } 3\sqrt{6} \text{ or } 7.34$	√54		M1 A1	for a correct expression for VT (condone missing brackets around $3\sqrt{5}$ or $3\sqrt{2}$ or $\frac{\sqrt{72}}{2}$)	2 /6 issue and award
		V 34			if $\sqrt{54}$ seen and answer then given as $\frac{1}{5}$ full marks	
						Total 4 marks

19	eg $(7.5+2.5) - 6 = 4$ large squares represents 8 trees or $5 \times 37.5 + 5 \times 12.5 - 10 \times 15 = 100$ small squares represents 8 trees		3	M1	oe eg 1 large square represents 2 trees or 12.5 small squares represents 1 tree
	200 - 250 = 10 250 - 300 = 8 300 - 400 = 12 400 - 450 = 15				or a frequency density axis scale where one large square vertically is FD of 0.04 with no contradictions
	450 - 600 = 15 (or $450 - 500 = 5$ or $500 - 600 = 10$) 600 - 800 = 4				or a correct frequency for any bar (could be seen on the diagram)
	$5 \times 2 + 2 \times 2$ or $\frac{10 \times 12.5 + 20 \times 2.5}{100} \times 8$ oe or $100 \times 0.1 + 200 \times 0.02$			M1	for a correct method to find the total number of trees greater than 500 cm.
		14		A1	
					Total 3 marks

20	(Length sf =) $\sqrt[3]{0.8} (= 0.928)$ or $\sqrt[3]{1.25} (= 1.07)$		4	M1	for a correct linear scale factor
	or $\sqrt[3]{4}:\sqrt[3]{5}$ oe				
	(Area sf =) $(\sqrt[3]{0.8})^2$ (= 0.861) or 86.1(%)			M1	for a correct area scale factor
	or $(\sqrt[3]{1.25})^2$ (=1.16) or 116(%) or $(\sqrt[3]{4})^2$: $(\sqrt[3]{5})^2$				
	oe		_		
	eg ($k =$) (1-"0.861")×100 or (100-"86.1")			M 1	for a method to find the percentage
	or $100 - \frac{100}{"1.16"}$ or $100 - \frac{100}{"116"} \times 100$				reduction
	or $100 - 100 \times \frac{(\sqrt[3]{4})^2}{(\sqrt[3]{5})^2}$				
		13.8		A1	accept 13.7 – 13.9
					Total 4 marks

21	$(\sqrt{2}-1)^2 = 2 - \sqrt{2} - \sqrt{2} + 1(=3 - 2\sqrt{2})$	$\frac{(3+\sqrt{8})}{(\sqrt{2}-1)^2} \times \frac{(\sqrt{2}+1)^2}{(\sqrt{2}+1)^2}$		4	M1	expand the denominator (accept $2-2\sqrt{2}+1$ - must see expansion) OR method to rationalise using $(\sqrt{2}+1)^2$
	$\frac{\left(3+\sqrt{8}\right)}{"\left(3-2\sqrt{2}\right)"} \times \frac{\left(3+2\sqrt{2}\right)}{\left(3+2\sqrt{2}\right)}$	$(\sqrt{2} - 1)^{2} = 2 - \sqrt{2} - \sqrt{2} + 1(= 3 - 2\sqrt{2})$ or $(\sqrt{2} + 1)^{2} = 2 + \sqrt{2} + \sqrt{2} + 1(= 3 + 2\sqrt{2})$ or $(\sqrt{2} - 1)(\sqrt{2} + 1) = 2 - \sqrt{2} + \sqrt{2} - 1(= 1)$			M1	oe ft $3-2\sqrt{2}$ method to rationalise OR expansion of $(\sqrt{2}-1)^2$ (accept $2-2\sqrt{2}+1$) or $(\sqrt{2}+1)^2$ (accept $2+2\sqrt{2}+1$) or $(\sqrt{2}-1)(\sqrt{2}+1)$
	eg $\frac{9+6\sqrt{2}+3\sqrt{8}+8}{9-6\sqrt{2}+6\sqrt{2}-8}$ or $\frac{9+12\sqrt{2}+8}{9-8}$	or $\frac{9+6\sqrt{2}+3\sqrt{8}+8}{1}$ or $\frac{9+12\sqrt{2}+8}{1}$			M1	dep on 2nd M1 correct expansion of brackets
			$17 + \sqrt{288}$		A1	or $p = 17$, $q = 288$ answer from fully correct working with intermediate steps of working seen
						Total 4 marks

22 (a)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2x + px^{-2} \text{ oe}$				4	M2	Both terms correct (M1 for one term correct)
	$2(-3) + p(-3)^{-2} (=0)$					M1	(dep on M1) substitute -3 into a derivative of the form $ax + bx^{-2}$
			54	4		A1	
(b)	$\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right) = 2x + 16x^{-2} = 0$				3	M1	set $\frac{dy}{dx} = 0$, at least one term correct
	eg $2x^3 + 16 = 0$ or $2x^3 = -16$ or $x^3 = -8$ or $x = \sqrt[3]{-2}$	eg $2x^3 + 16 = 0$ or $2x^3 = -16$ or $x^3 = -8$ or $x = \sqrt[3]{-8}$ or $x =$				M1	rearrangement of the correct equation to remove the negative power of x
			12	2		A1	
							Total 7 marks
23 (a)	$2(x^2-6x)+3$ or $2(x^2-6x+\frac{3}{2})$			3	M1		ne of <i>a</i> , <i>b</i> or <i>c</i> correct panding $a(x^2 + 2bx + b^2) + c$
	$2[(x-3)^2-9]+3 \text{ or } 2[(x-3)^2-3^2+\frac{3}{2}] \text{ oe}$				M1		wo of a, b or c correct $2 = 2ab$ or $3 = ab^2 + c$
		$2(x-3)^2$ -	-15		A1	accept a	a = 2, b = -3, c = -15
(b)		(-1,-15)	2	B2ft	or [their	pt [their $-b - 4$] for the x-coordinate r c] for the y-coordinate or one correct coordinate)
							Total 5 marks

24	$\frac{5}{x} \times \frac{(x-4)}{x} \text{ oe or } \frac{(x-5)}{x} \times \frac{6}{x} \text{ oe}$ $\frac{5}{x} \times \frac{(x-4)}{x} + \frac{(x-5)}{x} \times \frac{6}{x} \text{ oe}$		5	M1 M1	for a correct expression for P(R,G) or P(G,R) for a correct expression for P(R,G) + P(G,R)
	$19x^2 - 352x + 1600 (= 0) \text{ oe}$ or $19x^2 - 352x = -1600 \text{ oe}$			M1	for a correct equation in the form $ax^2 + bx + c \ (= 0) \ oe \ or \ ax^2 + bx = -c \ oe$
	(x-8)(19x-200) (= 0) or $(x=)\frac{352 \pm \sqrt{(-352)^2 - (4 \times 19 \times 1600)}}{2 \times 19}$ or $19\left[\left(x - \frac{176}{19}\right)^2 - \left(\frac{176}{19}\right)^2\right] + 1600(= 0)$			M1	for solving their 3-term quadratic equation using any correct method - if factorising, allow brackets which expanded give 2 out of 3 terms correct (if using formula or completing the square allow one sign error and some simplification – allow as far as $\frac{352 \pm \sqrt{123904 - 121600}}{38} \text{ oe or } 19\left(x - \frac{176}{19}\right)^2 - \frac{576}{19}(=0) \text{ oe })$
		8		A1	cao, dep on M2. Do not award if non-integer solution also given.8 must come from correct working.
					Total 5 marks

25	$ (S_{10} =) \frac{10}{2} (2a+9d) \text{ or } (S_5 =) \frac{5}{2} (2a+4d) \text{ oe or} a+7d = 45 $ $ \frac{10}{2} (2a+9d) = 4 \times \frac{5}{2} (2a+4d) \text{ oe} $ $ eg \ d = 2a \ oe \ or \ a = \frac{d}{2} \ oe $ $ or \ a+7d = 45 \ oe \ and \ eg \ 10a - 5d = 0 \ oe $ $ or \ eg \ \frac{10}{2} (2(45-7d)+9d) = 4 \times \frac{5}{2} (2(45-7d)+4d) \ oe $ $ or \ 5d = 10(45-7d) \ oe $ $ eg \ a+7(2a) = 45 \ or \ d = 6 \ or $ $ eg \ a+7(2a) = 45 \ or \ d = 6 \ or $ $ eg \ a+7(2a) = 45 \ or \ d = 6 \ or $ $ eg \ a+7(2a) = 45 \ or \ d = 6 \ or $ $ eg \ a+7(2a) = 45 \ or \ d = 6 \ or $ $ eg \ a+7(2a) = 45 \ or \ d = 6 \ or $ $ eg \ a+7(2a) = 45 \ or \ d = 6 \ or $ $ eg \ a+7(2a) = 45 \ or \ d = 6 \ or $ $ eg \ a+7(2a) = 45 \ or \ d = 6 \ or $ $ eg \ a+7(2a) = 45 \ or \ d = 6 \ or $ $ (75a = 225) \ (-75d = -450) $		5	the f term 8 th te Take 1 ar M1 for a M1 (dep vers 0r fo redu to ar one 0r su thein equa M1 (dep just meth of a to el	a correct expression for the sum of First 10 terms (S_{10}) or the first 5 as (S_5) or a correct equation for the erm e 9 as their 10 – 1 and 4 as their 5 – and 7 as their 8 – 1 a correct equation relating S_{10} and S_5 o on M1) for <i>d</i> in terms of <i>a</i> , or vice- a (must be correct) or $a + 7d = 45$ oe and correctly using the equation relating S_{10} and S_5 an equation with one term in <i>a</i> and term in <i>d</i> eg 10 <i>a</i> – 5 <i>d</i> = 0 oe ubstituting a correct expression into a correct equation to obtain an ation in just <i>d</i> o on M2) for a correct equation in <i>a</i> or for <i>d</i> = 6 or for a correct nod to eliminate <i>a</i> or <i>d</i> : coefficients or <i>d</i> the same and correct operation iminate selected variable (condone atthmetical error)
		3		A1 Dep	on M3
					Total 5 marks

Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London, WC2R 0RL, United Kingdom